
 1 

NAS Technical Report, NAS-05-011, June 2005 
 

Parallelization of Gauss-Seidel Relaxation for Real Gas Flow 
 
 

Seokkwan Yoon*, Gabriele Jost** and Sherry Chang*** 

 
NASA Ames Research Center 

Moffett Field, California 94035 
 
 

  Methods using OpenMP directives have been studied to parallelize an inherently sequential Gauss-
Seidel algorithm on shared memory computers. Both hyperplane and pipeline parallelization 
schemes have been implemented to a non-equilibrium real-gas flow simulation code. The effects of 
different parallelization strategies and grid sizes on the parallel efficiency have been investigated on 
SGI Origin and Altix systems.

                                                
*  NASA Advanced Supercomputing Division 
** Computer Sciences Corporation, Presently at Sun Microsystems 
***Computer Sciences Corporation, Work supported by the NASA Advanced Supercomputing Division under Task Order A61812D 
(ITOP Contract DTTS59-D-00437/TO #A61812D) with Advanced Management Technology Incorporated (AMTI) 

I. Introduction 
 
  Exploration of the solar system has revived an 
interest in computational simulation of 
chemically reacting flows since planetary 
exploration vehicles exhibit non-equilibrium 
phenomena during the atmospheric entry of a 
planet or a moon as well as the reentry to the 
Earth. Stability in combustion is essential for 
chemical propulsion systems. 
 
 Numerical solution of real-gas flows often 
increases computational work by an order-of-
magnitude compared to perfect gas flow partly 
because of the increased complexity of equations 
to solve. Recently, as part of Project Columbia, 
NASA has integrated a cluster of interconnected 
SGI Altix systems to provide a ten-fold increase 
in current supercomputing capacity that includes 
an SGI Origin system. Both the new and existing 
machines are based on cache coherent non-
uniform memory access architecture. 
 

 The Lower-Upper Symmetric Gauss-Seidel 
(LU-SGS) relaxation method1 has been the core 
solution algorithm for both perfect and real gas 
flow codes2-8 including Real-Gas Aerodynamic 
Simulator (RGAS)9. However, the vectorized 
RGAS code runs inefficiently on cache-based 
shared-memory machines such as SGI systems. 
Porting and optimization of the RGAS code to 
cache based machines have been performed. 
However, parallelization of a Gauss-Seidel 
method is nontrivial due to its sequential nature. 
 
 The LU-SGS method has been vectorized on 
hyperplanes in the INS3D-LU code4 that has 
been one of the base codes for the NAS Parallel 
Benchmarks10. It is possible to parallelize a 
Gauss-Seidel method by partitioning the 
hyperplanes once they are formed. Another way 
of parallelization is to schedule processors like a 
pipeline using software11. Both hyperplane and 
pipeline methods have been implemented using 
OpenMP directives. The present paper reports on 
the performance of the parallelized RGAS code 
on SGI Origin 3800 and Altix 3700 systems. 
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II. Numerical Methods 
 
  Let t be time; Q the vector of conserved 
variables; E, F, and G the convective flux 
vectors; 

v
E , 

v
F , and 

v
G  the flux vectors for 

the viscous terms. The source term S represents 
production or destruction of species due to 
chemical reactions. The three-dimensional 
Navier-Stokes and species transport equations in 
generalized curvilinear coordinates (ξ, η, ς) can 
be written as        
 
 

 
 
  The governing equations are integrated in time 
for both steady and unsteady flow calculations. 
An unfactored implicit scheme can be obtained 
from a nonlinear implicit scheme by linearizing 
the flux vectors about the previous time step and 
dropping terms of second and higher orders. 

 
 

 
where 
 

 
I is the identity matrix and Q! denotes the 
correction. A, B, C, and H are the Jacobian 
matrices of the convective flux vectors and the 
source term respectively. For steady-state 
solutions, !  is set to 1. Artificial dissipation 
models augment a piecewise-constant cell-
centered finite-volume formulation of the right 
hand side. 
 
  Direct inversion of a large block banded matrix 
becomes impractical in three dimensions because 
of the rapid increase of computational work and 
the large storage requirement. The LU-SGS 
scheme is one of the approximate factorization 
methods to alleviate the difficulties in three 
dimensions. Let subscripts f and s indicate fluid 
and species transport equations respectively. The 
loosely-coupled method solves the Navier-
Stokes and species transport equations separately 

but the solutions are updated simultaneously at 
each time step. 
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The loosely-coupled partially-implicit scheme 
includes the source Jacobian term H only in the 
Ls factor. Solving the equations in a loosely-
coupled manner ignores such terms in the 
Jacobian matrix A, for example, as sf QE !! /  

and fs QE !! / . 
 
 
 
 
 
 
III. Parallelization methods 
 
 The original vector code ran inefficiently on 
cache-based systems. First, manual optimization 
that included array changes for better cache and 
Translation Lookaside Buffer utilization 
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enhanced the performance of the serial code by a 
factor of two on the Origin 3800 system. The 
parallelization on shared memory systems is 
easier than distributed memory machines 
because of the globally addressable space. The 
user does not have to worry about distributing 
and communicating data in separate address 
spaces. 
 
 The LU-SGS scheme in the code was vectorized 
on hyperplanes where i+j+k=const where i,j, 
and k denote indices for three space dimensions. 
Figure 1 illustrates a two-dimensional example 
with j+k=const hyperlines. Circles indicate grid 
cells  to be solved while bullets are grid cells 
where the solutions are already updated. 
Calculations for the circles can be performed 
independently since the data for each circle have 
no dependencies. The key element was the 
conversion of three-dimensional indices (i,j,k) to 
two-dimensional ones (ipoint, iplane)4. Once the 
hyperplanes are formed, it is possible to 
parallelize the algorithm by partitioning the 
planes.  The method has the limitation that 
parallelism is restricted to points within one 
hyperplane.  
 
 In order to improve memory access, the code 
has been converted manually to use a canonical 
ordering. The restructured code improves the 
serial performance by a factor of two, already a 
significant speed-up on its own. Then the 
processors are scheduled like a pipeline on the 
outermost loop level12. Sequential operations in 
each processor are performed in the cache. This 
approach exploits partial parallelism in loops that 
carry dependencies. Figure 2 illustrates an 
example for pipeline parallelization. A parallel 
region is placed around the outermost loop in k-
dimension. The work is distributed in j-
dimension. For each k, all threads execute a slice 
of j-index. The first processor starts from the 
lower-left corner and works on one slice of data 
for the first k-index. Other processors are waiting 
for data to be available. Once the first processor 
finishes its job, the second processor can start 
working on its slice for the same k-index. In the 
meantime, the first processor moves onto the 
next k-index. This process continues until all the 
processors become active. Then they all work 
concurrently to the opposite end. The efficiency 
of pipelining may be limited due to the wait in 
startup and finishing.  
 
 Both hyperplane and pipeline codes are 
parallelized using the Computer-Aided 

Parallelizer and Optimizer (CAPO)13 
parallelization tool for the OpenMP 
parallelization.  The CAPO tool automates the 
insertion of compiler directives to facilitate 
parallel processing on shared memory machines. 
Due to the broad support of the OpenMP 
standard, the generated OpenMP codes can be 
run on a wide range of shared memory 
computers. The CAPO tool generates compiler 
directives in three stages: identification of 
parallel loops in the outer-most level, 
construction and optimization of parallel regions 
around parallel loops, and insertion of directives 
with a proper list of private, reduction and shared 
variables. 
 
This task would have been very time consuming 
when performed manually, particularly in view 
of the fact that the code requires sophisticated 
parallelization techniques such as pipelined 
thread execution, which is not available via 
automatic parallelization of the vendor-supplied 
commercial compiler. The rapid tool based 
parallelization allows for the comparison of 
different strategies and to choose the most 
efficient implementation. 
 
 The parallelization is non-trivial, since the 
implementation gives rise to a number of 
conservative and actual data dependencies. The 
CAPO tool uses the extensive dependency 
analysis module of the ParaWise14 system, and, 
based on the information resulting from the 
analysis, inserts OpenMP directives into the 
source code. The following features of the 
CAPO tool, which are not available via 
automatic compiler parallelization, are essential 
for the efficiency of the parallel code. The CAPO 
tool provides an extensive set of browsers to 
allow user interaction for improvements of the 
generated code. This makes it possible to 
interactively declare the scope of certain 
variables as either shared or private and thereby 
removing conservatively assumed dependencies, 
which would inhibit parallelization for the 
compiler.  The CAPO tool optimizes the parallel 
code by merging the parallelized loops within a 
routine into a large parallel region. This reduces 
time spent in overhead to fork and join at the 
beginning and end of parallel loops. 
 
IV. Results 
 
 The SGI Origin 3800 and Altix 3700 shared-
memory systems are based on 0.6 GHz RISC 
and 1.5 GHz Intel Itanium-2 processors 
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respectively. Timings for the serial and the 
parallel executions were obtained using the -O2 
optimization compiler flag during compilation. 
 
 In order to investigate the performance of 
parallel Gauss-Seidel methods for reacting flow, 
a scramjet problem has been used as a test case. 
The air-breathing rocket propulsion systems, 
which consume oxygen in the air, offer clear 
advantages by making vehicles lighter and more 
efficient. Fuel-air mixing and rapid combustion 
are of crucial importance for the success of 
scramjet engines since the spreading rate of the 
supersonic mixing layer decreases as the Mach 
number increases. In our test case, hydrogen fuel 
is injected transversely to incoming supersonic 
flow of air. The incoming air speed, pressure and 
temperature are assumed to be Mach 2, 1 atm 
and 1,000° K. Gaseous hydrogen is injected at 
the sonic speed through a hole at the bottom 
whose non-catalytic wall is cooled at 600° K.  
The length of combustion chamber is 40 times 
the diameter of injector. The Reynolds number 
based on the length is approximately 105. A 257 
x 257 x 257 structured grid (approximately 17 
million points) has been used with symmetric 
boundary conditions at the top and side walls. 
Supersonic flow boundary conditions are 
imposed at the inlet and outlet planes.  
 
 Figure 3 shows the speedup factors of the 
hyperplane method on an SGI Origin 3800 
system. The code consists of Left Hand Side 
(LHS) and Right Hand Side (RHS) of the 
equation. The LHS represents the Gauss-Seidel 
algorithm while the RHS includes residual 
calculation routines. The parallel performance of 
the code worsens when the number of processors 
increases to 128. This problem appears to be due 
to complicated memory access of the hyperplane 
method as indicated by the LHS performance. 
Figure 4 shows the speedup factors of the 
pipeline method on the SGI Origin system. No 
performance degradation is observed since the 
pipeline improves memory access. However, the 
speedup factor of the RHS does not appear to 
increase as the number of processors increases 
from 64 to 128. Figure 5 shows clearly that the 
pipeline method outperforms the hyperplane 
method as the number of processors increases. 
Figure 6 shows relative speedup factors of the 
pipeline method over the hyperplane method. 
Even on single processor, the pipeline method is 
4.58 times faster than the hyperplane method as 
shown by the LHS graph. Excluding the 128 

processor case, the relative speedup for the LHS 
ranges from 4.58 to 6.08. 
 
 Figure 7 shows the speedup factors of the 
pipeline method on an SGI Altix 3700 system. It 
should be noted that the performance increases 
from 64 to 128 processors unlike with the Origin 
system in Fig. 4. Figure 8 compares the speedup 
factors for components of the RHS. The 
performance problems of residual calculation 
routines should be a subject of future 
investigations. Figure 9 shows the relative 
speedup of the Altix over the Origin. The relative 
speedup is the ratio of the Origin time and the 
Altix time on a given number of processors. It is 
not surprising that the Altix is two to three times 
faster than the Origin considering the speed of 
Altix chip is 2.5 times faster than the Origin’s. 
What is interesting is that the best performance 
of the Altix seems to be at 128 processors. 
Finally, Figure 10 shows the effect of grid size 
on the speedup. The performance on the Altix 
improves as the grid size increases.  
 
 When compared to a 0.8 GHz Cray X1, the code 
on single processor of the Altix requires 1.54 
times more time than a vectorized version on 
X1’s single stream processor. However, the code 
on 4 Altix processors requires only 85 percent of 
the time on X1’s 4 single stream processors (1 
multi stream processor).  
 
 
Summary 
 
  Parallelization methods have been studied for a 
symmetric Gauss-Seidel relaxation algorithm in 
conjunction with a loosely-coupled scheme for 
chemically reacting non-equilibrium flow. Both 
hyperplane and pipeline methods have been 
implemented into Real-Gas Aerodynamic 
Simulator code using OpenMP directives on 
cache coherent non-uniform memory access 
architecture. Performance of the parallelization 
methods have been investigated on SGI Altix 
and Origin shared memory systems. The pipeline 
method outperforms the hyperplane method 
partly because of the improved memory access. 
The Altix shows better performance than the 
Origin as the number of processors increases. 
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Fig. 1. Hyperplane parallelization: Shown is 
a  j+k=const hyperline for two dimensions 
(i+j+k=const for three dimensions). 

Fig. 2.  Pipeline parallelization: Processors 
are scheduled along k-direction. Next 
processor waits for updated data from 
previous processor for a given k-index. 
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Fig. 3. Speedup factors of the hyperplane 
method on SGI Origin 3800 sytem 

Fig. 4. Speedup factors of the pipeline 
method on SGI Origin 3800 system 

Fig. 5. Comparison of hyperplane and 
pipeline methods for the Left Hand Side 
(Gauss-Seidel algorithm) 

Fig. 6. Relative speedup factors of the 
pipeline method over the hyperplane 
method 
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Fig. 7. Speedup factors of the pipeline 
method on SGI Altix 3700 system 

Fig. 8. Speedup factors for components of 
the Right Hand Side (Unrelated to Gauss-
Seidel algorithm) 

Fig. 9. Relative speedup factors of SGI 
Altix 3700 over SGI Origin 3800  

Fig. 10. Effect of grid size on parallel 
performance 


